Integration of sensory evidence in motion discrimination.
نویسندگان
چکیده
To make perceptual judgments, the brain must decode the responses of sensory cortical neurons. The direction of visual motion is represented by the activity of direction-selective neurons. Because these neurons are often broadly tuned and their responses are inherently variable, the brain must appropriately integrate their responses to infer the direction of motion reliably. The optimal integration strategy is task dependent. For coarse direction discriminations, neurons tuned to the directions of interest provide the most reliable information, but for fine discriminations, neurons with preferred directions displaced away from the target directions are more informative. We measured coarse and fine direction discriminations with random-dot stimuli. Unknown to the observers, we added subthreshold motion signals of different directions to perturb the responses of different groups of direction-selective neurons. The pattern of biases induced by subthreshold signals of different directions indicates that subjects' choice behavior relied on the activity of neurons with a wide range of preferred directions. For coarse discriminations, observers' judgments were most strongly determined by neurons tuned to the target directions, but for fine discriminations, neurons with displaced preferred directions had the largest influence. We conclude that perceptual decisions rely on a population decoding strategy that takes the statistical reliability of sensory responses into account.
منابع مشابه
Action Planning and the Timescale of Evidence Accumulation
Perceptual decisions are based on the temporal integration of sensory evidence for different states of the outside world. The timescale of this integration process varies widely across behavioral contexts and individuals, and it is diagnostic for the underlying neural mechanisms. In many situations, the decision-maker knows the required mapping between perceptual evidence and motor response (he...
متن کاملNeural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making.
Decision-making often requires the accumulation and maintenance of evidence over time. Although the neural signals underlying sensory processing have been studied extensively, little is known about how the brain accrues and holds these sensory signals to guide later actions. Previous work has suggested that neural activity in the lateral intraparietal area (LIP) of the monkey brain reflects the...
متن کاملEvidence against perfect integration of sensory information during perceptual decision making.
Perceptual decision making is often modeled as perfect integration of sequential sensory samples until the accumulated total reaches a fixed decision bound. In that view, the buildup of neural activity during perceptual decision making is attributed to temporal integration. However, an alternative explanation is that sensory estimates are computed quickly with a low-pass filter and combined wit...
متن کاملروشهای انطباق و اصلاح اختلال پردازش حسهای نزدیک درکودکان
Background: Abilities of sensory processes are underlying of effectiveness responding to situation, facilitate to learning, social behavior, and daily function. So, sensory processing disorders might have influence on daily life. The aim of this study was to present some of modification methods and environment accommodation and adapting with children characteristics with sensory processing. Met...
متن کاملSensory and striatal areas integrate auditory and visual signals into behavioral benefits during motion discrimination.
For effective interactions with our dynamic environment, it is critical for the brain to integrate motion information from the visual and auditory senses. Combining fMRI and psychophysics, this study investigated how the human brain integrates auditory and visual motion into benefits in motion discrimination. Subjects discriminated the motion direction of audiovisual stimuli that contained dire...
متن کاملAccumulation of Inertial Sensory Information in the Perception of Whole Body Yaw Rotation
While moving through the environment, our central nervous system accumulates sensory information over time to provide an estimate of our self-motion, allowing for completing crucial tasks such as maintaining balance. However, little is known on how the duration of the motion stimuli influences our performances in a self-motion discrimination task. Here we study the human ability to discriminate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of vision
دوره 7 12 شماره
صفحات -
تاریخ انتشار 2007